
AIAA-98-4529

LaSRS++ AN OBJECT-ORIENTED FRAMEWORK FOR REAL-TIME
SIMULATION OF AIRCRAFT

Richard A. Leslie, David W. Geyer, Kevin Cunningham�

Patricia C. Glaab, P. Sean Kenney, Michael M. Madden�

Unisys Corporation

NASA Langley Research Center

MS 169

Hampton, VA 23681

Abstract

Frameworks represent a collection of classes that

provide a set of services for a particular domain; a frame-

work exports a number of individual classes and mecha-

nisms which clients can use or adapt. This paper presents

an overview of an object-oriented (OO) framework that

can be used both in an interactive mode from a desktop,

or to support hard, synchronous, pilot-in-the-loop real-

time aircraft simulations. The abstractions used and the

benefits of object technology in this environment will be

discussed. The framework described in this paper has

been adopted at NASA Langley Research Center (LaRC)

as the basis for all future real-time aircraft simulations.

Introduction

The decision to shift the real-time simulation envi-

ronment from procedural FORTRAN to OO C++ was

made after serious consideration. To provide insight into

this decision a brief history of the evolution of real-time

simulation at LaRC over the last eight years is in order.

The legacy real-time simulation environment at

LaRC was procedural FORTRAN and involved the use

of several (more than six) separate software repositories.

Each repository was optimized to support a specific type

of research using a different simulator cockpit. Reposito-

ries were independent of each other with different vari-

able naming conventions, COMMON block structures, or

functional breakdown.

The fact that each repository was its own separate

development environment made it difficult to move per-

sonnel from project to project due to the learning curve

involved. Few (if any) developers fully understood all of

the repositories. It was difficult to balance the workload

across a limited development staff as the number of air-

planes active in each repository fluctuated. Moving code

from repository to repository was difficult. Significant

modification and testing were required to move an air-

craft model to a different repository. In the past it was

felt that these costs were acceptable as development was

being done on hardware that had limited memory and

processing power.

In the early 1990s LaRC began to invest in multi-

processor hardware platforms with relatively large

amounts of memory and computing power. As these ma-

chines became operational, discussions began about con-

solidating repositories in order to have a more unified en-

vironment. This resulted in a project to consolidate the

FORTRAN repositories. The resulting repository was

capable of meeting LaRC simulation requirements with

one exception, it could not support multi-vehicle simu-

lations. Multi-vehicle work was supported by a separate

repository that used dimensioned state variables to allow

up to three vehicles to be simulated simultaneously. This

repository supported distributing the simulation over two

CPUs. The decision to maintain a separate repository for

multi-vehicle work was due to a reluctance to impose the

complexity of dealing with dimensioned state variables

on single vehicle projects.

�Senior Member, AIAA
Copyright c
1998 by the authors. Published by the American

Institute of Aeronautics and Astronautics, Inc. with permission.

1
American Institute of Aeronautics and Astronautics



In May 1994, a prototyping effort was started to ex-

plore the feasibility of using object technology to de-

velop a single framework that would be capable of sup-

porting all real-time aircraft simulation at LaRC. This

prototype eventually evolved into the Langley Standard

Real-Time Simulation in C++ (LaSRS++) framework.

The decision to make LaSRS++ the standard framework

was made February 1995.

Key OO Concepts Utilized In Framework

Four basic OO concepts utilized in the LaSRS++ frame-

work are:

1. Abstraction

2. Encapsulation/Containment

3. Inheritance

4. Polymorphism

The ability to deal with layers of complexity is facil-

itated by the use of abstraction. The process of abstract-

ing away complexity allows the framework developer to

provide the user with a minimal but complete interface

that, through abstraction, encapsulates the details of an

object’s behavior. While being developed, the particular

details of an object’s behavior must be managed. Decid-

ing the appropriate level of abstraction is a design chal-

lenge. In developing classes for the framework the deci-

sion was made to initially provide the minimal interface

to a component. The justification being that it is easier to

add methods to access encapsulated data/behavior than it

is to reduce an over populated interface. The provided

interface to a component constitutes a contract with the

users, adding a method does not affect the current users,

removing a method is a violation of the implicit contract.

Violation of the contract forces the user to make modifi-

cation to source code that uses the modified class. If the

contract remains intact, and just the internal implemen-

tation changes, then the user can recompile and relink

without having to modify client source code.

The C++ language provides a means to control a

users access to the implementation details and data in

a class. In the LaSRS++ framework, the decision was

made to make all data private. Public and protected

accessors are provided to allow the users and derived

classes, respectively, to access to the data. Data and

methods that are implementation details are not made

public thereby protecting the integrity of the data and

retaining a level of control of an objects state. This

prevents accidental corruption of data contained in the

object. Furthermore, access through member functions

allows the function that returns a value to be replaced

by one that executes an algorithm and returns the result

without users having to modify code. The contract re-

mains intact.

This characteristic of containing data allows the user

to created multiple instances of a given airplane without

having to deal with dimensioned variables. In fact, by

observing a rule forbidding data to exist outside of an

object, all aircraft developed in the framework are multi-

vehicle capable. If one wants multiple aircraft one just

creates multiple instances of that aircraft.

Classes are the fundamental building blocks in C++.

A class usually represents a single concept or physical

entity. A developer specifies the behaviors (functions)

and the data that a class will contain. An object is a par-

ticular instance of a class. It is useful and proper to think

of classes like one thinks of intrinsic data types (int, float,

double).

The two most common relationship between classes

are inheritance and containment. Inheritance is often re-

ferred to as an “is a” relationship in that, when one class

inherits from another there is an implicit assumption that

the derived class is a either a specialization or an imple-

mentation of the base class. For example the B-757 “is

a” Aircraft. Perhaps the most powerful use of inheritance

is to provide abstract interfaces to subclasses. The base

class can define access to behavior that is fully or com-

pletely defined in the derived classes. This mechanism,

known as polymorphism, is implemented in C++ by use

of virtual and pure virtual functions. The other common

relationship is when a class contains a reference to a class

or classes internal to itself. This is often the case when

those classes are used to implement the containing class.

This relationship is sometimes called “has a”, contain-

ment, or aggregation.

The use of OO C++ and the enforcement of a few

simple implementation guidelines within the framework

create an environment where OO concepts are not just

allowed, but fostered.

2
American Institute of Aeronautics and Astronautics



Framework Structure

The basic framework abstractions can be seen in Figure

1.

SimControl

tMode h

Universe

of Vehicles
Linked List

Relative
Geometry

Atmosphere

Wind

World

F16a

HSCT

B757

Truck

Multi-CPU Synchronization

Figure 1: Framework Conceptual Diagram

All aircraft developed in the framework derive from

a common set of abstract base classes that provide an in-

terface between the framework and the specific aircraft

being modeled (Figure 2).

Simulation

ContinuousCyclicSim

FlightSim

Universe

Vehicle

Aircraft

Supervisor

World

UserInterface

HardwareControl

SimControl

Figure 2: Top Level View Of Framework

A brief summary of the classes in Figure 2 follows:

� Simulation: Provides an abstract interface to

allow concrete simulation types to be told to

execute().

� ContinuousCyclicSim: Adds an abstract in-

terface that supports the concepts of mode depen-

dent behavior and time that flows forward in fixed,

discrete intervals (time step).

� FlightSim: Defines the initialization and exe-

cution behavior of dynamic vehicles.

� Universe: Provides an environment in which

the vehicles execute. The concept of moving rel-

ative to a World, and relative geometry between

vehicles are encapsulated in this class.

� World: Provides a world for the vehicles to fly

around. Wind and Atmosphere are encapsu-

lated here.

� Vehicle: An abstraction for a dynamic vehicle

that has mode dependent behavior.

� Aircraft: Adds behavior specific to an air-

plane.

� SimControl: Provides moding and timing in-

formation in addition to multi-vehicle and multi-

CPU synchronization.

� HardwareControl: An abstract interface to

the hardware used in the simulation.

� Supervisor: Provides synchronization of sim-

ulation to hard real-time clock.

The modes used in the framework are defined as fol-

lows:

� reset: Used to initialize simulation/vehicles to a

known state, time is set to zero.

� hold: Time does not increment, all states are

frozen.

� operate: Time increments in discrete steps, vehicle

dynamics are active.

� trim: Vehicles are driven to some defined steady

state condition, time does not increment.

3
American Institute of Aeronautics and Astronautics



:FlightSim :Universe :World :Vehicle :Aircraft :UserInterface :HardwareControl

2: doOperate()

3: doOperate()

4: doOperateCalc()

5: doOperateCalc()

6: updateEnvironment()

7: doOperateCalc()

8: propogateVehicles()

9: calcGeometry()

1: recieveDataFromHardware()

10: sendDataToHardware()

Figure 3: Top Level Object Interaction Diagram

At the highest level of abstraction the framework

views all the the dynamic objects as vehicles, aircraft

is just a specific kind of vehicle. Therefore, while

primarily used to simulate aircraft, the framework is

capable of supporting any type of dynamic vehicle.

The framework provides real-time framing, mode (re-

set/hold/trim/operate) control, access to necessary vari-

ables, and the ability to do synchronous and asyn-

chronous input/output to hardware. The classes describ-

ing a particular vehicle define the unique behavior that

will be exhibited in a given mode.

For example, each vehicle defines its own unique be-

havior in operate mode(Figure 3). A brief description of

each method follows:

� HardwareControl::

recieveDataFromHardware(): Causes all

synchronous and asynchronous data received from

the various hardware components used in the sim-

ulation to be processed.

� Universe::updateEnvironment()

Commands list of World objects to

doOperateCalc().

� UserInterface::doOperate(),

Universe::doOperate(),

Vehicle::doOperate(),

World::doOperateCalc()

Causes each concrete class associated with these

abstract interfaces to perform whatever calcula-

tions they perform in operate.

� Universe::propogateVehicles()

Causes the state to advance to the next time step.

� Universe::calcGeometry() Calculates

relative geometry between vehicles.

� HardwareControl::

sendDataToHardware() Sends the asyn-

chronous and synchronous data generated by the

simulation to hardware.

Since each vehicle defines its own behavior in the

various modes (hold/trim/reset/operate), and each vehi-

cle has slightly different components, the abstractions

used are not necessarily the same across all vehicle types.

However, it is useful to examine a typical abstraction

for an airplane as shown in Figure 4. The interaction

between the objects used to implement this airplane are

shown in Figure 5.

4
American Institute of Aeronautics and Astronautics



F16aGear

AeroSystem

PropulsionSystem

Aircraft

F16a

F16aFcs Cockpit

Figure 4: Typical Aircraft Architecture

2: cockpitInput()

3: controlSystem()

4: forcesMoments()

5: computeThrust()

6: aeroLookup()

7: calcAccel()

8: integrateAll()

9: calcAuxEqns()

10: cockpitOutput()

:F16aFcs:Aircraft :F16a :Cockpit :F16aGear :PropulsionSystem :AeroSystem

1: doOperateCalc()

Figure 5: Typical Airplane Object Interaction Diagram

Interfaces to hardware are also abstract. Specific de-

tails of the interface to a particular piece of hardware are

abstracted away and the user only has to deal with an in-

terface that is generic. Cockpits are supported through an

abstract interface that normalizes all inputs and outputs

to the specific cockpit hardware.1 While the full set of

inputs needed to utilize all the capabilities of an airplane

may not be present in a given cockpit, any airplane can

be flown from any cockpit.

The framework is capable of supporting N-vehicles

running on M-processors.2 A current restriction is that

a given vehicle’s components must reside on the same

CPU. Research is ongoing into the possibility of using a

multi-threaded environment which would allow the dis-

tribution of a vehicle’s components across CPUs.

The user interfaces with the simulation through a X-

window Graphical User Interface (GUI) that provides the

ability to create and delete aircraft from the simulation.

Mode control, and the viewing and modification of vari-

ables in the simulation is also done through this GUI. The

simulation can be operated from any X-based terminal.

The same GUI interface that is used to operate produc-

tion real-time is available to support checkout from the

users desktop. A text based interface is also supported

for use from ASCII terminals.

5
American Institute of Aeronautics and Astronautics



Due to the use of encapsulation in the simulation, the

user can only modify variables through the use of meth-

ods that have been provided by the class designer in the

public interface. The designer can choose to allow read-

only, write-only, or read-write access to variables. Vari-

ables can also be completely encapsulated in the class

and therefore protected from inappropriate modification.

In the process of developing the framework a set of

“toolbox” classes were developed to provide developers

with building blocks for the construction of simulation

models. Toolbox functionality includes classes that:

� perform table lookups

� interface to SCRAMNet

� generate various random variate distributions

� provide both TCP/IP and TCP/UDP socket inter-

faces

� perform various filtering functions (such as

Tustin’s method)

� provide mutual exclusion.

To the extent possible the interfaces have been sim-

plified so that users have access to capabilities that they

might not have chosen to use in the past due to the com-

plexity involved. The socket classes are an example of

where users are now able to establish socket communica-

tions between distributed components in the simulations

without having to deal with the details of how the inter-

face is established.

Simulations Using Framework

To date there are four simulations supported by the

framework. These simulations are a F-16A, a F-18E/F

Drop Model,3 a High Speed Civil Transport (AST-104)

model and, a B-757. The B-757 is particularly interesting

in that the code developed to drive experimental systems

on the actual research B-757 are being developed in the

simulation environment and will be moved to the aircraft

with little (if any) modification. This concept called sim-

to-flight has been facilitated by the use of object technol-

ogy to develop the code.

Conclusions

A real-time simulation architecture has been devel-

oped utilizing OO analysis and design techniques. The

architecture has been implemented using the OO pro-

gramming language C++. This has resulted in a highly

flexible system capable of simulating multiple instances

of dynamic objects. These objects can be distributed

across CPUs.

The software architecture is a self contained environ-

ment that is capable of supporting any type of dynamic

object. All data is encapsulated in classes. There is no

global or public data in this architecture.

Each dynamic object contains its own sequence of

operations to execute. This allows each dynamic object

to have uniquely defined behavior separate from other

dynamic objects in the simulation. Multiple vehicles can

be simulated simultaneously. The relative geometry of

each vehicle relative to every other vehicle in the simu-

lation is calculated.

The main routine driving this simulation is com-

pletely independent of both vehicle (plane, truck, ship,

etc.) and simulation (continuous cyclic or discrete-event)

type. This along with the supporting class library fa-

cilitates the rapid development of new types of vehicles

through reuse.

Acknowledgments

The authors wish to thank the LaRC Simulation Sys-

tems Branch for their strong support in a time of change.

Bibliography

[1] P. Sean Kenney, et al. Using Abstraction To Isolate

Hardware In An Object-Oriented Simulation. Paper

Number AIAA-98-4533, August, 1998.

[2] Michael M. Madden, et al. Constructing A

Multiple-Vehicle, Multiple-CPU Simulation Using

Object-Oriented C++. Paper Number AIAA-98-

4530, August, 1998.

[3] Kevin Cunningham, et al. Simulation Of A F/A-18

E/F Drop Model Using The LaSRS++ Framework.

Paper Number AIAA-98-4160, August, 1998.

[4] Grady Booch. Object-Oriented Analysis and De-

sign. Benjamin/Cummings, Redwood City, Cali-

fornia, 1994.

6
American Institute of Aeronautics and Astronautics



[5] Joseph A. Kaplan, Patrick S. Kenney. SimGraph

- A Flight Simulation Data Visualization Worksta-

tion. Paper Number AIAA-97-3797, August, 1997.

[6] David W. Geyer, et al. Managing Shared Memory

Spaces In An Object-Oriented Real-Time Simula-

tion. Paper Number AIAA-98-4532, August, 1998.

[7] Bruce Eckel. Thinking in C++. Prentice-Hall, En-

glewood Cliffs, New Jersey, 1995.

[8] Gamma E., Helm R., Johnson R., Vlissides J.

Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading,

Massachusetts, 1995.

[9] John Lakos. Large-Scale C++ Software Design.

Addison-Wesley, Reading, Massachusetts, 1996.

[10] Robert C. Martin. Designing Object-Oriented C++

Applications Using The Booch Method. Prentice-

Hall, Englewood Cliffs, New Jersey, 1995.

[11] Scott Meyers. Effective C++. Addison-Wesley,

Reading, Massachusetts, second edition, 1998.

[12] Scott Meyers. More Effective C++. Addison-

Wesley, Reading, Massachusetts, 1996.

[13] David R. Musser, Atul Saini. STL Tutorial and

Reference Guide. Addison-Wesley, Reading, Mas-

sachusetts, 1996.

[14] Bjarne Stroustrup. The C++ Programming Lan-

guage. Addison-Wesley Publishing Company,

Reading, Massachusetts, third edition, 1997.

[15] Patricia C. Glaab, et al. A Method To Interface

Auto-Generated Code Into An Object-Oriented

Simulation. Paper Number AIAA-98-4531, Au-

gust, 1998.

[16] Terry Quatrani. Visual Modeling With Rational

Rose and UML. Addison Wesley, Reading, Mas-

sachusetts, 1998.

7
American Institute of Aeronautics and Astronautics


